Abstract

Pyrrolizidine alkaloids (PAs) are the most common plant-derived toxins with emerging evidence to contaminate soil, water, nearby plants and derived food products. Outbreaks of human poisoning cases, due to the ingestion of PA-contaminated food, have been reported in various countries including Ethiopia. This study first investigated the contamination of PAs in retail honey in Ethiopia. A striking 77% of honey samples (27/30) were found to contain PAs with the content ranging over 1.5–323.4 μg/kg. Notably, these PAs were also found as contaminants in mead, an alcoholic beverage made from local honey, indicating the transfer of PAs from the primarily contaminated honey into mead. Further toxicological examinations revealed that long-term PA exposure caused vasculature damage, fibrosis, and steatosis in mouse livers, and co-exposure to dietary alcohol exacerbated the PA-induced chronic hepatotoxicity. Furthermore, the study revealed that moderate alcohol intake did not affect the initiation mechanism (hepatic cytochrome P450-mediated bioactivation) of PA-induced hepatotoxicity but significantly disturbed hepatic glutathione homeostasis, thereby increasing oxidative stress in mouse liver and enhancing PA-induced hepatotoxicity. Our findings exemplify the carry-over of PA contamination through the food chain. Precautionary interventions are warranted on the hazardous effects of dietary exposure to PAs, particularly with concomitant alcohol consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call