Abstract

Sprinters are advised to include additional protein sources in their diet. Basal metabolism and vigorous physical activities generate hydrogen ions that need to be buffered. The present follow-up study estimates the dietary potential renal acid load (PRAL) and net endogenous acid production (NEAP) in adolescent sprint athletes. Seven-day food diaries and anthropometrics of 60 adolescent sprint athletes (mean age at start 14.7 ± 1.9 years) were collected every six months over a three year period. Comparisons were made between athletes with a negative (PRAL(−)) versus positive PRAL (PRAL(+)). For the entire sample, mean PRAL values of up to 6 mEq/day were slightly positive despite a relatively high protein intake of around 1.5 g/kg. The NEAP ranging between 42 and 46 mEq/day remained stable during the study period. Athletes with a PRAL(−) (−8 to −10 mEq/day) consumed significantly more fruit and fruit juice than athletes with a PRAL(+) (+9 to 14 mEq/day). Athletes with a PRAL(+) did not consume more meat, fish and poultry than athletes with a PRAL(−). Grains and dairy products were only discriminative between the two groups on one measurement occasion. Lowering the PRAL can be obtained by increasing the consumption of potatoes, fruits, vegetables and vegetable soup.

Highlights

  • The maintenance of homeostasis plays a key role in health and sports performance

  • The estimated diet-dependent net acid production can be calculated as the sum of organic anions from the basal metabolism and the potential renal acid load (PRAL) of all consumed food items [5]

  • It has been suggested [6,7] that the long–term net acid excretion should not exceed 100–120 mEq/day since this may result in a maximal renal stimulation of acid, decreasing the plasma bicarbonate availability

Read more

Summary

Introduction

The maintenance of homeostasis plays a key role in health and sports performance. As such, tissue and blood pH levels, once perturbed, must be returned to normal ranges. The estimated diet-dependent net acid production can be calculated as the sum of organic anions from the basal metabolism and the PRAL of all consumed food items [5] It has been suggested [6,7] that the long–term net acid excretion should not exceed 100–120 mEq/day since this may result in a maximal renal stimulation of acid, decreasing the plasma bicarbonate availability. Sufficient fruit and vegetable consumption seems to be indispensible to prevent the diet from being an additional stressor of the buffering system in the sprinters’ body It is the aim of this study to evaluate the estimated dietary PRAL in relation to protein and carbohydrate intake, and consumption of different foods in adolescent sprint athletes

Subjects
Food Intake
Statistics
Results
Discussion and Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.