Abstract

ObjectivePolyunsaturated fatty acids (PUFAs), including essential fatty acids linoleic and α-linolenic acid and derived long chain and very long chain ω3-and ω6-polyunsaturated fatty acids, are vital structures in mammalian membrane systems and signaling molecules, pivotal in brain development, lipid, and energy metabolism and in female and male fertility during human evolution. Numerous nutritional studies suggest imbalance of PUFA metabolism as a critical factor in the pathogenesis of several human lifestyle diseases: dyslipoproteinemia, obesity, cardiovascular and neurodegenerative diseases, and infertility. The lack of unbiased animal models impedes molecular interpretation of the role of synthesized and dietary supplied PUFAs in these conditions. In this study, we used a Δ6 fatty acid desaturase (FADS2) deficient mouse mutant lacking key enzyme activity in the biosynthesis of ω3-and ω6-PUFAs from EFAs to address the molecular role of PUFAs in female and male fertility. Infertility is a hallmark of the pleiotropic but auxotrophic fads2−/− phenotype and is therefore helpful for stringent dietary studies on the role of individual PUFAs. MethodsFeeding regimens: Age- and gender-matched infertile fads2−/− mice were maintained on defined diets, normal diet containing essential fatty acids, and supplemented with ω6-arachidonic acid, ω3-docosahexaenoic acid, and arachidonic/docosahexaenoic acid, starting (a) after weaning and (b) initiated in 4-month-old female and male fads2−/− mice. Phospho- and sphingolipidomes of ovarian and testicular membrane lipid bilayers in each cohort were established and the impact on the expression and topology of membrane marker proteins, membrane morphology, germ cell development, and female and male fertility in the respective cohorts was elaborated. ResultsPUFA synthesis deficiency caused a halt to folliculogenesis, atresia of oocytes, and infertility of fads2−/− female mice. A PUFA-deficient membrane lipid bilayer core structure led to the disassembly of the gap junction network of the follicular granulosa cells. In fads2−/− testis, the blood-testis barrier was disrupted and spermatogenesis arrested, leading to infertility. Sustained supply of combined AA and DHA remodeled the PUFA-deficient ovarian and testicular membrane lipidomes, facilitating the reassembly of the functional gap junction network for regular ovarian cycles and the reconstitution of the blood-testis barrier in Sertoli cells, reconstituting fertility not only in developing newborns, but surprisingly also in adult infertile fads2−/− mice. ConclusionsThese findings demonstrate the previously unrecognized membrane structure-based molecular link between nutrient ω3-and ω6-PUFAs, gonadal membrane structures, and female and male fertility and might foster studies of the pivotal role of dietary PUFAs in human fertility.

Highlights

  • Polyunsaturated fatty acids (PUFAs) include the essential fatty acids (EFAs), u6-linoleic acid (18:29,12), and u3-a-linolenic acid (18:39,12,15), which are indispensable for cell viability

  • The initial bottleneck reaction of PUFA biosynthesis is the desaturation of EFAs by D6 fatty acid desaturase (FADS2)

  • Reconstitution of the disrupted granulosa cell network in the follicles of the fads2À/À ovaries remodeled by nutrient AA/DHA The morphology of the ovaries of the infertile nd-fads2À/À adult females and ovaries of fads2À/Àcohorts under AA, DHA, and AA/DHA

Read more

Summary

Introduction

Polyunsaturated fatty acids (PUFAs) include the essential fatty acids (EFAs), u6-linoleic acid (18:29,12), and u3-a-linolenic acid (18:39,12,15), which are indispensable for cell viability. They are utilized as precursors for the synthesis of long chain (LC-PUFAs) (

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.