Abstract

Direct actions of omega-3 polyunsaturated fatty acids (PUFAs) on neuronal composition, neurochemical signaling and cognitive function constitute a multidisciplinary rationale for classification of dietary lipids as "brain foods." The validity of this conclusion rests upon accumulated mechanistic evidence that omega-3 fatty acids actually regulate neurotransmission in the normal nervous system, principally by modulating membrane biophysical properties and presynaptic vesicular release of classical amino acid and amine neurotransmitters. The functional correlate of this hypothesis, that certain information processing and affective coping responses of the central nervous system are facilitated by bioavailability of omega-3 fatty acids, is tentatively supported by developmental and epidemiological evidence that dietary deficiency of omega-3 fatty acids results in diminished synaptic plasticity and impaired learning, memory and emotional coping performance later in life. The present review critically examines available evidence for the promotion in modern society of omega-3 fatty acids as adaptive neuromodulators capable of efficacy as dietary supplements and as potential prophylactic nutraceuticals for neurological and neuropsychiatric disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.