Abstract

Pitheciines (Pithecia, Chiropotes, and Cacajao) are a specialized clade of Neotropical seed predators that exhibit postcanine teeth with low and rounded cusps and highly crenulated occlusal surface enamel. Data on feeding ecology show that Pithecia consumes proportionally more leaves than other pitheciine species, and comparative studies demonstrate its greater molar relief and relative shearing potential. However, data on pitheciine food mechanics show that Pithecia masticates seeds with greater crushing resistance than those preferred by Chiropotes. This variation predicts an opposing morphology characterized by low and more rounded occlusal surfaces in Pithecia. We build on previous research using new methods for molar surface shape quantification by examining pitheciine second molar shearing crest length, occlusal relief, surface complexity, and surface curvature relative to nonseed specializing platyrrhines and within the context of the observed interspecific variation in pitheciine feeding ecology. Consistent with the previous analyses, our findings demonstrate that pitheciine molars exhibit low shearing, relief, and curvature compared with nonseed predators, independent of phylogeny. Pitheciines also exhibit highly "complex" occlusal topography that promotes the efficient breakdown of tough seed tissues. Overall, Pithecia, Chiropotes, and Cacajao share a similar topographic pattern, suggesting adaptation to foods with similar structural and/or mechanical properties. However, Cacajao differs in surface complexity, which reflects some variation in its feeding ecology. Contrary to the predictions, Pithecia and Chiropotes do not differ in any of the topographic variables examined. The range of demands imposed on the postcanine teeth of Pithecia might therefore select for an average topography, one that converges on that of Chiropotes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.