Abstract

ABSTRACTCastor oil is a renewable resource that has potential uses as an environmental friendly material for a range of applications. In recent years, much efforts have been driven to develop alternate plasticizer for medical and commodity plastics due to growing concerns about dioctyl phthalate (DOP) for flexible poly(vinyl chloride) (PVC). In this study, a bio‐based plasticizer was synthesized by a two‐step esterification reaction of castor oil fatty acid (COFA) with benzyl alcohol and octanoic acid in the presence of catalyst (dibutyl tin dilaurate). The structure of the octanoic ester (OE) was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, acid value, and hydroxyl value. OE was used as a coplasticizer in PVC for partial replacement of DOP. The addition of OE exhibited good incorporation and plasticizing performance in the PVC sheets. Incorporation of OE resulted in good plasticizing, tensile strength, percentage elongation, exudation, thermal stability, and chemical resistance because of the presence of long carbon chains of COFA. Differential scanning calorimetry (DSC), thermogravimetric analysis, and color measurements were also performed to evaluate the effect of OE. With the increase in OE, DSC and hardness results showed marginal deviation from those obtained for DOP‐plasticized sheets. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40354.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.