Abstract

The upcoming Euro 7 regulation for Heavy-Duty (HD) vehicles is calling for a further tightening of the Solid Particle Number (SPN) emissions by means of both lowering the applicable limits and shifting the lowest detectable size from 23 nm (SPN23) to 10 nm (SPN10). A late-technology diesel HD truck was tested on a chassis dynamometer in order to assess the necessary particle filtration requirements for a continuously regenerating system. The study showed that passive regeneration under real-world operating conditions can lead to a significant release of SPN10 particles from the current technology Diesel Particulate Filter (DPF) when soot-loaded, even exceeding the currently applicable emission limits. The actual emissions during passive regeneration and following the clean-up of the DPF exceeded the proposed Euro 7 limits by more than an order of magnitude. A prototype DPF, exhibiting a 99% filtration efficiency when clean, was shown to effectively control SPN10 emissions under both operating conditions. The shift to SPN10 also necessitates control of nanoparticles forming inside the Selective Catalytic Reduction (SCR) system, which for the tested truck exceeded the proposed (hot) limit by up to 56%. A dedicated particle filter specifically designed to capture these particles was also evaluated, showing a better than 60% efficiency. The key message of this study is that SPN emissions can be kept at low levels under all conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call