Abstract
This paper demonstrates the initiated use of relevant refining palm oil for bio-hydrogenated diesel production. The conversions of crude palm oil (CPO) and its physical refining including degummed palm oil (DPO) and palm fatty acid distillate (PFAD) to diesel fuel by hydroprocessing were studied. The effects of operating parameters (i.e. reaction time, operating temperature, and pressure) and catalyst (i.e. Pd/C and NiMo/γ-Al2O3) were examined in order to determine suitable operating condition for each feedstock. It was found that the hydroprocessing of CPO with Pd/C catalyst at 400°C, 40bar, and reaction time of 3h provides the highest diesel yield of 51%. When gum which contains phospholipid compounds is removed from CPO, namely DPO, the highest diesel yield of 70% can be obtained at a shorter reaction time (1h). In the case of PFAD, which consists mainly of free fatty acids, a maximum diesel yield of 81% could be observed at milder conditions (375°C with the reaction time of 0.5h). The main liquid products are n-pentadecane and n-heptadecane, having one carbon atom shorter than the corresponding fatty acids according to decarboxylation/decarbonylation pathways. Pd/C catalyst shows good catalytic activity for fatty acid feedstocks but becomes less promising for triglyceride feedstocks when compared to NiMo/γ-Al2O3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.