Abstract
The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from off-line calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99%. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 and 4 μm. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest single scattering albedo. A similar treatment was done for aerosols from biomass burning. In this case, two size distributions were considered. One was based on a distribution measured for Northern Hemisphere temperate forest fires while the second was based on a measured size distribution for tropical fires. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and band averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity and black carbon fraction. These optical properties result in global average forcing from anthropogenic sulfate aerosols of −0.81 Wm-2. The global average forcing for biomass aerosols ranged from −0.23 to −0.25 Wm-2 depending on the assumed size distribution, while fossil fuel organic and black carbon are estimated to heat the atmosphere by about 0.16 Wm-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.