Abstract

The vast majority of neurodegenerative disease cannot be attributed to genetic causes alone and as a result, there is significant interest in identifying environmental modifiers of disease risk. Epidemiological studies have supported an association between long-term exposure to air pollutants and disease risk. Here, we investigate the mechanisms by which diesel exhaust, a major component of air pollution, induces neurotoxicity. Using a zebrafish model, we found that exposure to diesel exhaust particulate extract caused behavioral deficits and a significant decrease in neuron number. The neurotoxicity was due, at least in part, to reduced autophagic flux, which is a major pathway implicated in neurodegeneration. This neuron loss occurred alongside an increase in aggregation-prone neuronal protein. Additionally, the neurotoxicity induced by diesel exhaust particulate extract in zebrafish was mitigated by co-treatment with the autophagy-inducing drug nilotinib. This study links environmental exposure to altered proteostasis in an in vivo model system. These results shed light on why long-term exposure to traffic-related air pollution increases neurodegenerative disease risk and open up new avenues for exploring therapies to mitigate environmental exposures and promote neuroprotection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.