Abstract

AbstractDiesel engines are widely used for road and marine transports. Stationary diesel engines are also used for off-grid supply of electricity for households or to run the auxiliary equipment such as pump, compressor, etc. A significant portion of the thermal energy input to diesel engines is ultimately rejected as waste heat. Exhaust flue gas from marine diesel engines are at about 300 °C. On the other hand, jacket cooling water and scavenging air cooling water are available at below 100 °C. Available waste heat from road transport system may be utilized to produce cooling/heating effect for conditioning of the cabin environment. The waste heat may also be used in turbo chargers for a higher power density. In marine applications, the waste heat may drive a bottoming power cycle to supply the auxiliary power. Waste heat available form a stationary diesel power plant can even be used to run a cogeneration/polygeneration unit satisfying some of the localized energy needs. In the present chapter, simulation results of possible schemes and effects of waste heat recovery from diesel engines have been explored. Finally, generalized principles for the simulation of diesel engine waste heat recovery have been discussed.KeywordsEngine waste heatFuel economyCogenerationBottoming cycleSimulation studies

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.