Abstract

The safe operation of diesel engines performs a vital function in industrial production and life. Because diesel engines often work in harsh environmental conditions, they are prone to failure. Therefore, this paper proposes a fault analysis method based on a combination of optimized variational mode decomposition (VMD) and improved convolutional neural networks (CNN) to address the necessary need for preventive maintenance of diesel engines. The authentic vibration sign is first decomposed by using the (VMD) algorithm, then the greatest range of decomposition layers is decided by using scattering entropy and the useful components are preferentially chosen for reconstruction. The continuous wavelet transform (CWT) records preprocessing method is then delivered to radically change the noise-reduced vibration sign into a time-frequency map, which is fed into the CNN for model coaching and extraction of fault features. Finally, fault classification is realized by support vector machine (SVM) with excellent classification performance. Through preset fault experiments on diesel engines, it is established that the technique proposed in this paper can successfully identify fault states, and the classification accuracy is higher than alternative methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call