Abstract

Since the introduction of diesel urea SCR technology, aftertreatment thermal management has become critical for maintaining SCR catalyst light-off and thereby low cumulative cycle NOx emissions. A novel diesel engine aftertreatment thermal management strategy is proposed which utilizes a 2-stroke breathing variable value actuation strategy to increase the mass flow rate of exhaust gas. Experiments showed that when emissions are constrained to the same level as a state-of-the-art thermal management strategy, 2SB does not increase heat transfer to aftertreatment. However, if constraints are allowed to flex, temperatures comparable to a state-of-the-art thermal management calibration could be achieved with a 1.75× exhaust mass flow rate, potentially helping heat the SCR catalyst in a cold-start scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.