Abstract

The Diels–Alder reaction has been widely used in synthetic organic chemistry since its discovery in 1928. The catalyst-free nature, functional group tolerance and high efficiency of the Diels–Alder reaction also make it promising for the fabrication of functional polymeric materials. In particular, a large variety of functional polyphenylenes (polymer structures mainly consisting of phenylenes) and ladder polymers (double-stranded polymers with periodic linkages connecting the strands) have been obtained by this method, offering potential applications such as polymer electrolyte membranes and gas separation. More recently, tailor-made polyphenylenes prepared by Diels–Alder polymerization have been used as precursors of structurally well-defined graphene nanoribbons (ribbon-shaped nanometer-wide graphene segments) with different widths, exhibiting long lengths (>600 nm) and tunable electronic bandgaps. This article provides a comprehensive review of the use of Diels–Alder polymerization to build functional polyphenylenes, ladder polymers and graphene nanoribbons. In this review, we summarize the use of Diels–Alder reaction in the synthesis of arylene-based polymers, including polyphenylenes and ladder polymers, as well as graphene nanoribbons. These polymer materials are structurally related to each other, but rarely discussed all together in a same context. The importance and versatility of the Diels–Alder polymerization is highlighted for the synthesis of such polymers with various potential applications, for example, as polymer electrolyte membrane and organic semiconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call