Abstract

A synthesis of [2]rotaxanes in which Zn(II) or Cu(II) Lewis acids catalyze a Diels-Alder cycloaddition to form the axle while simultaneously acting as the template for the assembly of the interlocked molecules is described. Coordination of the Lewis acid to a multidentate endotopic 2,6-di(methyleneoxymethyl)pyridyl- or bipyridine-containing macrocycle orients a chelated dienophile through the macrocycle cavity. Lewis acid activation of the double bond causes it to react with an incoming "stoppered" diene, affording the [2]rotaxane in up to 91% yield. Unusually for an active-template synthesis, the metal binding site "lives on" in these rotaxanes. This was exploited in the synthesis of a molecular shuttle containing two different ligating sites in which the position of the macrocycle could be switched by complexation with metal ions [Zn(II) and Pd(II)] with different preferred coordination geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call