Abstract
We present a tuneable optical waveguide using dielectrophoretically controlled nanoparticles in microfluidics. Silicon dioxide nanoparticles of different sizes in de-ionized water are channelled through a microfluidic system. An array of microelectrodes generates the dielectrophoretic force to funnel nanoparticles, forming narrowbands at the center of the microfluidics at different applied voltages and frequencies. It is observed that these narrowbands either scatter or guide the coupled light under selected conditions. The realization of such a system offers exciting possibilities for the development of a new class of optofluidics, which are tuned by the positioning of nanoparticles on demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.