Abstract

Switchability is a highly sought after feature for planar optical systems. Suspensions of nanomaterials can be used for generating controllable changes in such systems. We report a planar diffractive microfluidic lens which integrates controlled dielectrophoresis (DEP) for trapping suspended nanomaterials. Silicon and tungsten oxide nanoparticle suspensions are used. These nanomaterials are trapped in such a way as to form alternating opaque and transparent rings using the DEP forces on demand. These rings form a planar diffractive Fresnel zone plate to focus the incident light. The Fresnel zone plate is tuned for the visible light region and the lens can be turned on (DEP applied) or off (DEP removed) in a controlled manner. This proof of concept demonstration can be further expanded for a variety of switchable optical devices and can be integrated with lab-on-a-chip and optofluidic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.