Abstract

The paper proposes a dielectrophoresis microfluidic chip for particle separation, which uses dielectric properties to perform size-based fractionation of red blood cells and platelets. Based on the control variables, the distribution of the electric field in the chip and the trajectory of the particles in the microfluidic channel are calculated using COMSOL Multiphysics under different electrode shapes, voltages and chip exit structures. Both red blood cells and platelets respond to negative dielectrophoresis at an alternating current signal with a frequency of 100 kHz. The larger red blood cells are subjected to a stronger dielectrophoretic force than the platelets and are biased toward the right outlet, and the platelets flow out from the left outlet under the combined action of fluid force and dielectrophoretic force to achieve the purpose of separation. On this basis, through quantitative comparison and analysis, a more optimized microfluidic chip capable of effectively separating particles is finally selected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.