Abstract

We demonstrate wavelength-independent optical limiting based on colloidal phase transitions induced by the dielectrophoretic force from focused electromagnetic radiation. The focused radiation acts as an optical trap that increases the particle density. The increased density then leads to a colloidal gas-solid phase transition and an aggregate that effectively blocks the incoming radiation when it passes a threshold power. The process is reversible, with the colloidal particles returning to a homogenous distribution after the incoming radiation is removed. We demonstrate the effect using polystyrene nanoparticles mixed with pluronics and polyethylene glycol polymers in low-concentration KCl salt solutions. We observe the light-induced phase separation under confocal fluorescent microscope, and we provide a proof-of-principle demonstration of optical limiting using a 100μm thick colloid cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.