Abstract

Results of detailed and systematic calculations are presented for the total dielectronic recombination rate coefficients for the ions of Ne, Mg, and S in a low-density predominantly hydrogen plasma. The new recombination rates are used to calculate solar corona ionization-equilibrium distributions of the ions. The most important effect of dielectronic recombination for ions in corona equilibrium is found to be a shift in the maximum-abundance temperatures toward higher temperatures, which are in some cases reduced from those predicted on the basis of the simple Burgess formula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.