Abstract
Dielectronic recombination (DR) of xenonlike W20+ forming W19+ has been studied in the collision energy range 0–140 eV. The measured rate coefficient is dominated by strong DR resonances even at the lowest experimental energies. At temperatures relevant for fusion plasmas, the experimentally derived plasma recombination rate coefficient is over a factor of 4 larger than the theoretically-calculated rate coefficient which is currently used in fusion plasma modeling. The largest part of this discrepancy stems most probably from the neglect in the theoretical calculations of DR associated with fine-structure excitations of the W20+([Kr]4d10 4f8) ion core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.