Abstract

THz pulses have many unique properties in terms of radiation matter interaction. In particular their non-ionizing excitation of phonons in matter makes them a preferred pump for pump-probe studies at free electron lasers. In order to enrich the scientific potentials at SwissFEL (Swiss Free Electron Laser), which can provide ultrashort soft and hard X-ray pulses, we plan to build an economic THz radiator in the range of 1-20 THz by passing the spent electron beam through a dielectric lined tube after the electron beam has generated X-rays. These THz pulses will be transported to the photon user station. Since SwissFEL operates with 2 bunches, serving two beamlines, THz from the first bunch can be used at the user station of the second bunch to allow for pump arrival time before the probe. The core of such a THz generation setup is the dielectric lined tube and the relativistic electron beam. This paper reports on the numerical study of these tubes, in terms of mode structure, energy, pulse length etc, which are essential parameters for the pump-probe experiments. These tubes will be fabricated and tested in the near future in the electron beam line for the soft X-ray of SwissFEL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.