Abstract
Dielectric spectroscopy in frequencies that range from 10 Hz to 1 GHz has been used to study the molecular orientational dynamics of the two types of dimers that form the twist-bend nematic phase over a wide range of temperatures for both nematic and twist-bend nematic phases. The symmetrical and asymmetrical liquid crystal dimers with the cyanobiphenyl mesogenic groups were investigated. The results were analyzed within the framework of the molecular theory of dielectric permittivity for nematogens. The two molecular processes can be assigned to the reorientation of the monomeric unit: the high frequency one to the precessional rotation of the longitudinal components of the cyanobiphenyl groups (CN) and the second (low frequency) to the end-over-end rotation of the CN dipole around the short molecular axis. The precession mode, which is determined by the local order and is almost unaffected by the phase transition from the nematic to the twist-bend phase, while the end-over-end rotation clearly slowed down at the transition, as it is affected by the growth of the intermolecular interactions. The latter corresponds well to the fact revealed by IR spectroscopy about the longitudinal correlation of the molecular dipoles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.