Abstract

AbstractDielectric spectroscopy was used to monitor the curing process of two epoxy resin systems. The basic system (system I) consisted of DGEBA (a difunctional epoxy) and a polyamide in a 50–phr mixture. In addition, a comparative analysis was performed on a high–performance resin system (system II) used primarily in unidirectional composite applications. This system contained TGDDM (a tetrafunctional epoxy) and DDS (a tetrafunctional amine) in a 25–phr mixture. The dielectric data were obtained using a simple yet functional sample cell electrode designed and constructed in the laboratory. For system I, isothermal dielectric data were used to determine apparent activation energies for the temperature range from 22 to 70°C. The data showed that the activation energy was a function of temperature and increased as the temperature of the cure increased. This indicated that the reaction mechanism was also a function of temperature. For system II, data were collected between 140 and 190°C and an overall activation energy for that temperature range was determined. The overall activation energies for both systems, calculated using dielectric spectroscopy, compared favorably to those obtained using differential scanning calorimetry. Also, using a wider frequency range (240 Hz to 2 MHz), Argand diagrams were constructed and modeled with the Cole–Cole empirical equation for systems with a distribution of relaxation times. This justified the calculation of average relaxation times, which could then be related to the bulk physical properties of the polymer, such as viscosity. Modified Argand diagrams, where ε″ is plotted against ε′ at one frequency as a function of time, were also constructed, which aided in the understanding of the curing processes for these thermosetting systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.