Abstract

Temperature and frequency dependence of dielectric constant and conductivity properties of Pb0.77K0.26Li0.2Ti0.25Nb1.8O6 (PKLTN) ceramics are modelled through the universal dielectric response (UDR). Partial substitution of Ti4+ for Nb5+ was compensated by charge and the creation of oxygen vacancies according to the Kroger-Vink notation. The electrons released by this reaction are captured by Nb5+ and Ti4+ to generate Nb3+ and/or Ti3+. The hopping of electrons between Nb5+–Nb3+ and Ti4+–Ti3+ are believed to participate in conductivity. Characterization of the dielectric constant has been performed from room temperature to 590°C in the frequency range from 45 Hz to 5 MHz. The measured dielectric constant obeyed Jonscher's dielectric dispersion relations: ε l = ε ∞ + sin(n(T)π/2)(a(T)/ε 0)(ωn ( T )−1) and ε ll = σ/iε 0 ω + cos(n(T)π/2)(a(T)/ε 0)(ωn ( T )−1). Cole-Cole plots inclined at an angle (1 − n(T))π/2 and followed the trend of universal material behavior ε ∞ + A(T)(ωn ( T )−1). The exponent n(T) and coefficient A(T) = (a(T)S/L) exhibited a minimum and maximum at T c = 425°C, respectively. The conductivity studies show the contribution of the hopping of bound charge carriers to conduction in PKLTN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.