Abstract

We study the response of single nanosized spherical colloids in electrolyte solution to an alternating electric field (AC field) by computer simulations. We use a coarse-grained mesoscopic simulation approach that accounts in full for hydrodynamic and electrostatic interactions as well as for thermal fluctuations. The solvent is modeled as a fluid of single dissipative particle dynamics (DPD) beads, and the colloidal particle is modeled as a rigid body made of DPD beads. We compute the mobility and the polarizability of a single colloid and investigate systematically the effect of amplitude and frequency of the AC fields. Even though the thickness of the Debye layer is not ‘thin’ compared to the radius of the colloid, and the thermal fluctuations are significant, the results are in good agreement with the theoretical prediction of the Maxwell–Wagner–O’Konski theory, especially for uncharged colloids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.