Abstract

The relative complex dielectric function, electric modulus and alternating current electrical conductivity spectra and complex impedance plane plots of aqueous solution cast poly(ethylene oxide)–montmorillonite clay (PEO–MMT) nanocomposite films were investigated over the frequency range 20 Hz to 1 MHz at ambient temperature. The intercalated and exfoliated structures of nanoclay dispersed in PEO matrix were recognized by the significant change in real part of dielectric function with clay concentration in the range 0%–20 wt%. The relaxation times corresponding to PEO chain segmental motion and ionic conduction relaxation processes were used to explore the interactions compatibility between PEO molecules and the dispersed MMT clay nanoplatelets and their effect on PEO chain dynamics. Real part of conductivity spectra of these nanocomposites over five decades of frequency has nonlinear behavior, which is influenced by the MMT clay concentration. The complex impedance plane plots confirm the bulk properties of these nanocomposites over the experimental frequency range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.