Abstract

The results of the investigation of protein molecule dynamic in solution by Time Domain Dielectric Spectroscopy are presented. The horse myoglobin solutions in wide range of concentration from 0.6% to 54% at 20°C have been investigated. The result of analysis produced in the term of dipole correlation function has shown that the obtained correlation function of macromolecule motion may be presented as sum of three components corresponding to three kinds of protein motions: anisotropic intramolecular motion, anisotropic Brownian tumbling and isotropic slow motion. We suppose that the cause of protein tumbling anisotropy and the possibility to keep slow motion is the interprotein electrostatic interactions. The characteristic time of slow motion depends on the concentration of protein and perhaps is controlled by translational diffusion. The dipole moment of myoglobin calculated by the Onsager-Oncley equation is 200D for solutions less than 10% protein concentration. It is in a good agreement with the theoretical value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.