Abstract

A dramatic improvement in the dielectric and electrical properties has been observed in ceramics of 0.8BaTiO3–0.2Bi(Zn1/2Ti1/2)O3 through the introduction of Ba vacancies. It possesses a high relative permittivity (εr > 1150) along with a low dielectric loss (tan δ < 0.05) that is maintained up to temperatures as high as 460°C. It is also characterized by a high resistivity of 70 GΩ‐cm, which remains constant up to 270°C. Analysis of complex impedance (Z*) and complex electric modulus (M*) data, measured over the frequency range of 1–106 Hz, revealed a number of important findings. At high temperatures (T > 255°C), a complex plane analysis of Z″ versus Z′ and the frequency dependence of Z″ suggests an electrically inhomogeneous microstructure for the stoichiometric composition. The stoichiometric composition exhibited activation energies of ~1 eV which suggests an extrinsic conduction mechanism. However, the introduction of Ba vacancies resulted in electrically homogeneous microstructure. An overlap of the Z″ and M″ peaks in the frequency domain and much larger activation energies were observed, on the order of half of the band gap, suggesting an intrinsic conduction mechanism. A more detailed analysis of the data reveals insights into the physical mechanisms underpinning the dielectric and ac conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.