Abstract

This study is concerned with a series of acrylate based side-chain liquid crystalline (LC) polymers. Previous studies have shown that these LC polymers have a preference for parallel or perpendicular alignment with respect to the polymer chain which depends on the length of the coupling chain joining the mesogenic unit to the polymer backbone. On the other hand, the dielectric relaxation of these side-chain LC polymers shows a strong relaxation associated to the mesogenic unit dynamics. For samples with parallel alignment, it was found that the dielectric relaxation of the nematic is weaker and broader than the relaxation of the isotropic. By contrast, for samples with perpendicular alignment, the isotropic to nematic transition reduces the broadening the relaxation and increases the relaxation strength. These two features are more evident for samples with short coupling units for which the dielectric relaxation observed appears to be strongly coupled with the backbone dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.