Abstract

AbstractA conductivity dispersion has been measured at very low frequencies (VLF) on several concentrated DNA solutions. By measuring simultaneously their electric birefringence decay, it is shown that the dielectric relaxation (which is related to the conductivity dispersion) is due to the molecular orientation. Different polarization mechanisms are discussed. It is concluded that the DNA polarizability measured in the VLF range can only be explained by the orientation of a permanent ionic dipole. It is suggested that such permanent dipoles could be caused by small differences in the ionic composition between the two molecular “ends;” the difference could either be stable (asymmetrical localization of protein impurities for instance) or transient (fluctuating dipoles explained by the Kirkwood‐Schumaker theory).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.