Abstract

Experimental measurements of the dielectric breakdown strength of an arcing gap after current zero were made to determine the effects of arc chamber venting on the reverse recovery voltage needed to break down a recovering gap. The recovery conditions applied closely matched those created in a molded case circuit breaker under power line fault conditions. Three different vent sizes were used to determine the effect of gas pressure on the recovery characteristics of the plasma with recovery time between 170 /spl mu/s to 280 /spl mu/s, and currents from 3 kA/sub p/ to 15 kA/sub p/. Larger venting, providing increased cooling of the plasma, resulted in increased breakdown strength over the full range of currents. Based on the approximation that the recovering plasma breakdown strength is inversely proportional to plasma thermal temperature, breakdown voltage values were fitted to an exponential model to obtain plasma time constants and the initial hold-off voltage. Comparing these results to curve fits of E/p values showed E/p was a more accurate representation of the data. It is proposed to use E/p values when there is significant post current-zero chamber pressure. These results could be used as a guide to predicting molded case breaker interruption performance, especially for small arc chambers and short gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.