Abstract

SrZrO3 (SZO) thin films have been prepared on Pt-coated silicon substrates and directly on Si substrates by pulsed laser deposition (PLD) using a ZrSrO target at a substrate temperature of 400 °C in 20 Pa oxygen ambient. X-ray θ–2θ scans showed that the as-deposited films remain amorphous at a substrate temperature of 400 °C. The dielectric constant of SZO has been determined to be in the range 24–27 for the Pt/SZO/Pt structure. Capacitance–voltage (C–V) characteristics of a metal-oxide-semiconductor (MOS) structure for SZO films deposited in 20 Pa oxygen ambient and 20 Pa nitrogen ambient (SZON) indicated that incorporation of nitrogen during the substrate heating and film deposition can suppress the formation of an interfacial SiO2 layer, and the SZON films have a lower equivalent oxide thickness (EOT) than that of the SZO films. However, the leakage current of the SZON films is larger than that of the SZO films. The EOT is about 1.2 nm for a 5-nm SZON film deposited at 400 °C. The leakage-current characteristics of as-deposited SZON films and SZON films post-annealed in oxygen ambient by rapid thermal annealing (RTA) have been studied comparatively. The films post-annealed with RTA have a lower leakage current than the as-deposited SZON films. Optical transmittance measurements showed that the band gap of the films is about 5.7 eV. It is proposed that SrZrO3 films prepared at 400 °C are potential materials for alternative high-k gate-dielectric applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.