Abstract

Using first principles calculations, we have studied the dielectric properties of crystalline α- and β-phase silicon germanium nitrides and silicon carbon nitrides, A3−ξBξN4 (A = Si, B = Ge or C, ξ=0,1,2,3). In silicon germanium nitrides, both the high-frequency and static dielectric constants increase monotonically with increasing germanium concentration, providing a straightforward way to tune the dielectric constant of these materials. In the case of silicon carbon nitrides, the high-frequency dielectric constant increases monotonically with increasing carbon concentration, but a more complex trend is observed for the static dielectric constant, which can be understood in terms of competition between changes in the unit-cell volume and the average oscillator strength. The computed static dielectric constants of C3N4, Si3N4, and Ge3N4 are 7.13, 7.69, and 9.74, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.