Abstract

Abstract2,7‐Di‐tert‐butylpyrene was oxidized to 2,7‐di‐tert‐butylpyrene‐4,5,9,10‐tetraone. The latter through condensation reaction with vicinal diamine such as diaminomaleodinitrile afforded heterocyclic monomer, 2,7‐di‐tert‐butyl pyrene[4,5][9,10]bis(2,3‐pyrazine‐5,6‐dinitrile), which was cyclotetramerized to the corresponding 2H‐ and metal‐pyrazinoporphyrazine‐based network polymers (2H‐PyzPz and M‐PyzPz, M = Co, Ni, Zn, or Cu). Elemental analytical results, Infrared, and NMR spectral data of the new prepared molecules are consistent with their assigned formulations. Molecular masses and metal contents of the synthesized polymers proved to be of high molecular masses, which confirm the efficiency of tetramerization polymerization and complexation reactions. Dielectric permittivity, ε′, loss tangent, tan δ, and ac conductivity, σac(ω), of 2H‐PyzPz and M‐PyzPz films were studied as a function of temperature and frequency. It was found that dielectric permittivity, ε′, decreases with the increase of frequency and increases with the increase in temperature. Ac conductivity, σac(ω), is found to vary as Bωs and the frequency exponent, s, is less than unity around room temperature indicating a dominant hopping process. On the other hand, σac(T) of all samples is thermally activated with low activation energies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.