Abstract

The screened electron-electron interaction in a multi-band electron system is calculated within the random phase approximation and in the tight-binding representation. The obtained dielectric matrix contains, beside the usual site-site correlations, also the site-bond and bondbond correlations, and thus includes all physically relevant polarization processes. The arguments are given that the bond contributions are negligible in the long wavelength limit. We analyse the system with two non-overlapping bands in this limit, and show that the corresponding dielectric matrix reduces to a 2 × 2 form. The intra-band and inter-band contributions are represented by diagonal matrix elements, while the off-diagonal elements contain the mixing between them. The latter is absent in insulators but may be finite in conductors. Performing the multipole expansion of the bare long-range interaction, we show that this mixing is directly related to the symmetry of the atomic orbitals participating in the tight-binding electronic states. In systems with forbidden atomic dipolar transitions, the intra-band and inter-band polarizations are separated. However, when the dipolar transitions are allowed, the off-diagonal elements of the dielectric matrix are of the same order as diagonal ones, due to a finite monopole-dipole interaction between the intra-band and inter-band charge fluctuations. We also calculate the macroscopic dielectric function and obtain an expression which interpolates between the well-known limits of oneband conductors and pure insulators. In particular, it is shown that the microscopic origin of the so-called selfpolarization corrections is the on-site interaction which exchanges two electrons at different orbitals, combined with a finite tunneling between neighboring sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.