Abstract

Organic–inorganic nanocomposites of poly(vinyl alcohol) (PVA)–poly(ethylene oxide) (PEO) blend filled with montmorillonite (MMT) nanoclay up to 10 wt.% concentration were synthesized by aqueous solution-cast technique. The complex dielectric function, electrical conductivity, electric modulus and impedance spectra of the nanocomposites were measured in the frequency range 20 Hz–1 MHz at ambient temperature. A direct correlation was observed between the real part of dielectric function and the mean relaxation time of the polymer chain segmental dynamics, with the exfoliated and intercalated MMT clay structures, and the extent of miscibility between PVA and PEO due to hydrogen bonded bridging through exfoliated MMT clay nanosheets. The large increase of dielectric relaxation time revealed that the dispersed exfoliated nanoscale MMT clay in the polymers blend matrix produces a large hindrance to the polymer chain dynamics. Results confirm that the real part of dielectric function of the nanocomposites can be tailored by varying amount of MMT clay filler for their use as nanodielectric materials in the microelectronic technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call