Abstract
Micropatterns of barium titanate nanocube (BT NC) assemblies were fabricated by dip-coating self-assembly using a micropatterned mold made of Si or polyimide (PI). The microstructure of the BT NC assembly in the micropatterned mold made of PI showed the closest packing structure. This result indicated that the polymer wall in the micropatterns is swollen by the organic solvent used in the dip-coating self-assembly process. As a result, this swelling might work effectively for the self-assembly of the NCs with high ordering assisted by capillary force. Moreover, it is clarified that the line-and-space-molds with a taper angle and a large width were more useful for the self-assembly of BT NCs in microtrenches selectively. The micropatterned mold made of PI could be removed by immersing in N-methyl-2-pyrrolidone at 65 °C. The ordered structure was not destroyed during the removal process. Micropatterned BT NC capacitor structures were obtained by this method after sintering at 850 °C. The interfaces of BT NCs were conjugated face-to-face, as shown by the obtained high-resolution transmission electron microscopy (HR-TEM) cross-sectional profiles. This process has a great potential for fabricating patterned assemblies directly on substrates. The dielectric properties of BT NC micropatterned assemblies in micropatterned molds made of Si were also characterized and compared with those of BT NC assemblies on Pt/Si substrates without micropatterning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.