Abstract

The dielectric properties and phase transition behavior of the pseudo-ternary xPb(Mg1/3Nb2/3)O3-(1 − x)Pb(Zr,Ti)O3 solid solution system were investigated as a function of the Pb(Mg1/3Nb2/3)O3 (PMN) content and Ti/Zr ratio for selected compositions. The investigations have demonstrated a general trend in broadening of the phase transition and increasing diffusivity with increasing PMN content. For the morphotropic phase boundary (MPB) compositions, the dielectric permittivity maximum, its temperature (T m) and the Curie-Weiss constant were found to decrease with increasing Mg1/3Nb2/3 concentration. When a Ti/Zr ratio was constant and equal to 53/47, temperature-dependent investigations demonstrated that the dielectric parameters involved in a modified Curie-Weiss law increase monotonically with increasing PMN content and T m moves toward room temperature with average rate of ≈ −4.1°C/mol% as well. A phase transition in 0.5PMN-0.5Pb(Zr0.47Ti0.53)O3 and 0.25PMN-0.75Pb(Zr0.60Ti0.40)O3 ceramic systems exhibited a diffused behavior with a characteristic frequency dependence of T m. From pyroelectric measurement, an unusual spontaneous polarization behavior at about 215 K is reported for some MPB compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.