Abstract
The dielectric properties of petroleum coke at five temperatures between 20 to 100 ∘ C, covering different moisture content levels at 2.45 GHz, were measured using an open-ended coaxial probe dielectric measurement system. The effects of drying temperature, duration of drying, and sample mass on the moisture content and dehydration rate of petroleum coke was assessed utilizing the response surface methodology. The dielectric constant, loss factor, and loss tangent were all found to increase nearly linearly with increase in moisture content. Three predictive empirical models were developed to relate the dielectric constant, loss factor, and loss tangent of petroleum coke as a linear function of moisture content from 3–10%. An increase in temperature between 20 to 100 ∘ C was found to increase the dielectric properties. The penetration depth was observed to increase linearly with decrease in moisture content in the range of 3 to 10%. A predictive empirical model was developed to calculate penetration depth for petroleum coke. Two mathematical models were established and analyzed using RSM to describe the relationship between the microwave drying conditions and the responses, moisture content, and dehydration rate. Statistical analysis with response surface regression showed that microwave drying temperature, duration of drying, and sample mass were significantly related to moisture content and dehydration rate. Based on the RSM analysis, the optimum process conditions were estimated to be a microwave drying temperature of 75 ∘ C, drying duration of 10 sec, and sample mass of 60 g, with the resultant moisture content being 0.34 at a dehydration rate of 2.94 g/min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.