Abstract

The electrocaloric effect (ECE) is a promising candidate to replace the vapor-compression cooling technology, which has reached its end of improving the energy utilization efficiency. In the present work, the Y-modified BaTiO3 ceramics with nominal compositions of Ba(Ti1-xYx)O3 (abbreviated as BT-100xY, where x = 0.0125, 0.025, 0.0375, 0.050 and 0.0625) have been prepared through the conventional solid-state reaction sintering method. The dielectric properties and electrocaloric effect of BT-100xY ceramics have been investigated in detail. The XRD patterns indicate that all the BT-100xY ceramics possess pure perovskite structure without secondary phases. The temperature dependence of dielectric permittivity reveals that the BT-1.25Y, 2.5Y, 3.75Y and 5.0Y are normal ferroelectrics, and the BT-6.25Y is a relaxor ferroelectric. The ECE is calculated through the indirect equation based on Maxwell relation. The BT-2.5Y exhibits the largest ΔT = 1.26 K and the largest ΔS = 1.68 J/kg · K among all the BT-100xY ceramics, and the BT-2.5Y also exhibits the largest ΔT/ΔE = 0.296 × 10−6 K · m/V and the largest ΔS/ΔE = 0.394 × 10−6 J · m/kg · K∙V. The ECE in our work is comparable with or even larger than that of BaTiO3-based ceramics previously reported, which indicates that the BT-100xY ceramics are promising ECE materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call