Abstract
Dielectric Modulated Field-Effect Transistors (DMFETs) have emerged as promising candidates for label-free bioanalyte detection. However, the inherent short-channel effects in conventional DMFETs increase their static power dissipation significantly and limit their scalability and sensitivity. Therefore, FETs based on alternate conduction mechanism such as tunneling (TFETs), which are immune to the short-channel effects, appear to be a lucrative alternative to the MOSFETs for biosensing application. In this work, we propose a novel Dual Cavity Dielectric Modulated Nanotube Tunnel FET (DCDM NTTFET)-based label-free biosensor consisting of a Ge source and nanocavities within the core as well as a shell gate stack, which not only outperforms the conventional MOSFET and advanced nanowire (NW) TFET-based biosensors in terms of energy-efficiency and scalability but also exhibits a significantly high drain current sensitivity (SION = 2.9 × 108) and a threshold voltage sensitivity (SVth = 0.85), and a considerably high selectivity of more than 6 orders of magnitude. We also perform a comprehensive design space exploration for the proposed DCDM NTTFET and provide necessary design guidelines to further improve its performance considering the practical artifacts such as steric hindrance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.