Abstract
Dielectric materials for electret applications usually have to contain a quasi-permanent space charge or dipole polarization that is stable over large temperature ranges and time periods. For electrical-insulation applications, on the other hand, a quasi-permanent space charge or dipole polarization is usually considered detrimental. In recent years, however, with the advent of high-voltage direct-current (HVDC) transmission and high-voltage capacitors for energy storage, new possibilities are being explored in the area of high-voltage dielectrics. Stable charge trapping (as e.g. found in nano-dielectrics) or large dipole polarizations (as e.g. found in relaxor ferroelectrics and high-permittivity dielectrics) are no longer considered to be necessarily detrimental in electrical-insulation materials. On the other hand, recent developments in electro-electrets (dielectric elastomers), i.e. very soft dielectrics with large actuation strains and high breakdown fields, and in ferroelectrets, i.e. polymers with electrically charged cavities, have resulted in new electret materials that may also be useful for HVDC insulation systems. Furthermore, 2-dimensional (nano-particles on surfaces or interfaces) and 3-dimensional (nano-particles in the bulk) nano-dielectrics have been found to provide very good charge-trapping properties that may not only be used for more stable electrets and ferroelectrets, but also for better HVDC electrical-insulation materials with the possibility to optimize charge-transport and field-gradient behavior. In view of these and other recent developments, a first attempt will be made to review a small selection of electro-active (i.e. electret) and electro-passive (i.e. insulation) dielectrics in direct comparison. Such a comparative approach may lead to synergies in materials concepts and research methods that will benefit both areas. Furthermore, electrets may be very useful for sensing and monitoring applications in electrical-insulation systems, while high-voltage technology is essential for more efficient charging and poling of electret materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.