Abstract

We prepared multiferroic Y-type hexaferrite Ba0.5Sr1.5Zn2Fe12O22 ceramics and compared their magnetic and dielectric properties with single crystal. Magnetic susceptibility and microwave resonance measurement revealed magnetic phase transition at TC=312 K, similar as in single crystal. Ferroelectric (FE) phase can be induced by external magnetic field in all investigated samples and the phase diagram in ceramics qualitatively resembles that of the single crystal. The range of magnetic fields, where the FE phase is induced, broadens after annealing of single crystal. Ceramics quenched after sintering exhibit several orders of magnitude lower conductivity than the single crystal. Heavily damped magnetic resonance was discovered in terahertz spectra at 10 K and its frequency softens below 5 GHz near TC. Number and symmetry of observed infrared (IR) and Raman active phonons correspond to paraelectric phase with D3d5 hexagonal structure. No evidence for a structural phase transition was found in the IR and Raman spectra on cooling (in zero magnetic field) or in the room-temperature IR spectra with external static magnetic field up to 0.3 T.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.