Abstract

From dielectric spectroscopic study, a first-order ferroelectric phase transition has been observed in ferroelectric smectic mixture CS-1013 having the phase sequence Cr-SmC*-SmA-N*-Iso. Frequency (100 Hz-10 MHz) and temperature-dependent dielectric measurements have been performed on an electrically aligned sample (thickness 15+/-1 microm) gold coated on glass plates. In the unidirectionally aligned sample, two dielectric relaxation modes (Goldstone mode and soft mode) have been clearly observed in the ferroelectric SmC* phase while only one relaxation mode (soft mode) is visualized in the paraelectric SmA phase. Low-frequency molecular relaxation was also observed in the smectic phases. The experimental results have also been analyzed at different temperatures and biasing voltages for an understanding of the dynamics of dielectric processes in the ferroelectric phase. Finally, we proposed the "pseudospin" model for understanding the ferroelectric-antiferroelectric transition in liquid crystals. We associate the tilt angle straight theta and the pitch of the helix, respectively, with biaxial (b) and uniaxial (u) anisotropy parameters as fluctuating parameters around their stability limit (corresponding to the crystalline values). Here, the director acts as the pseudospin variable. This gives rise to a transverse Ising type (or anisotropic Heisenberg model under the mean-field approximation). It is then shown that such a model with fluctuations of (b) and (u) would explain the ferroelectric and antiferroelectric phase transitions in such liquid crystals. Using Landau theory and the stability conditions, we have also shown, in brief, the feasibility of different types of phase transitions in the ferroelectric liquid crystal system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call