Abstract

The dielectric, ferroelectric, and piezoelectric properties of ceramic materials of compositions (1 − x)[Pb0.91La0.09(Zr0.60Ti0.40)O3]–x[Pb(Mg1/3Nb2/3)O3], x = (0, 0.2, 0.4, 0.6, 0.8, and 1.0) were studied. The above compositions were prepared by mixing the individual Pb0.91La0.09(Zr0.60Ti0.40)O3 (PLZT) and Pb(Mg1/3Nb2/3)O3 (PMN) powders in order to design materials with different combination of piezo and dielectric properties. The powders were calcined at 850 °C for 4 h. The presence of various phases in the calcined powders was characterized by X-ray diffraction (XRD) technique. The compacts were prepared by uniaxial pressing and were sintered at 1250 °C for 2 h. The sintered compacts were electroded, poled at 2 kV/mm dc voltage and their dielectric, ferroelectric, and piezoelectric properties were measured. In general, it was observed that the dielectric constant, loss factor and the slimness of the ferroelectric curves increase with the PMN content while the remnant polarization, saturation polarization, and the coercive fields were decreased. It is now possible to design materials with a wide combination of d 33, K, and loss factor by varying PLZT and PMN ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.