Abstract

For almost 20 years, dielectric elastomer actuators (DEAs) have been the subject of intense research in material science. A large number of publications describe artificial muscles based on DEAs as a promising alternative for an energy efficient, lightweight and flexible actuation architecture. DEAs could improve and extend the capabilities of robotic and prosthetic devices in terms of their dynamical performance and their eligibility for energy autarkic operation. However, up to now DEAs are not available on a large scale with reproducible characteristics nor are they yet usable on a system integration level. In this paper we present recent findings of our ongoing five-year project to qualify DEAs as feasible artificial muscles for usage in compliant robot kinematics and soft prosthetic devices. The focus of this contribution lies on a new automated production process using Aerosol Jet Printing for stacked DEAs with very thin layers for reduced driving voltages and improved mechanical characteristics resulting from the additive manufacturing. Secondly, a new set of lightweight power electronics based on pulse width modulation (PWM) is presented which aims at the improvement of the overall specific power of DEA driven kinematic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call