Abstract
PurposeThe purpose of this paper is to investigate of the ultra‐wide band (UWB) characteristics of a conical antenna covered by an electromagnetic band‐gap (EBG) structure composed of alternating high‐ and low‐permittivity dielectric spherical shells.Design/methodology/approachA finite difference time domain in spherical coordinates is implemented in order to characterize the antenna's performance and waveform fidelity in case an UWB pulse is used. The method of projected effective permittivity is used in order to treat accurately the dielectric interfaces between the dissimilar spherical shells.FindingsThe design achieves a very wide impedance bandwidth above 5.5 GHz and presents UWB radiation characteristics and high average gain over the whole bandwidth. The radiation patterns are monopole‐like and their frequency dependence is small in the whole UWB frequency band. A time domain study has shown that the antenna distorts the excitation pulse in a moderate way.Originality/valueIn this paper, a quasi‐planar wideband conical antenna coated on a dielectric EBG structure is proposed for what is believed to be the first time. It is mechanically stable and, relatively easy to build and integrate with the planar circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.