Abstract

The organic-inorganic nanocomposite materials consisted of poly(vinyl alcohol) (PVA) and poly(ethylene oxide) (PEO) blend matrix (50/50wt%) dispersed with zinc oxide (ZnO) nanoparticles have been prepared by the aqueous solution-cast method. The dielectric dispersion and relaxation processes in these polymer nanocomposite (PNC) films (i.e., (PVA-PEO)-x wt% ZnO; x = 0, 1, 3 or 5) have been investigated over the frequency range from 20Hz to 1MHz by employing the dielectric relaxation spectroscopy (DRS). Influence of ZnO contents on the complex dielectric permittivity, electrical conductivity, electric modulus and impedance properties of these PNC materials has been explored. The dielectric permittivity and the relaxation time values corresponding to polymers cooperative chain segmental motion significantly change with the variation of ZnO contents in the PVA-PEO blend matrix at ambient temperature. The temperature dependent relaxation times and dc conductivity values of (PVA-PEO)-3wt% ZnO film have been investigated which obey the Arrhenius behaviour. The dielectric permittivity of the film as a function of temperature exhibits linear behaviour at radio frequencies and non-linear variation at lower audio frequencies. X-ray diffraction measurements confirm a huge decrease in crystalline phase of the polymer blend matrix on the addition of 1wt% ZnO nanoparticles. These PNC materials have low values of dielectric permittivity and electrical conductivity which confirm their suitability as novel flexible-type polymer nanodielectric for the insulation in microelectronic devices, whereas the fast chain segmental dynamics and high amorphous phase reveal these materials as a potential candidate for the preparation of nanocomposite solid polymer electrolytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call