Abstract

The high sensitivity of traditional diagnostic methods hinders their application in inertial confinement fusion with the pulsed radiation power of target plasma being as high as 1013–1014 W. Different methods of attenuating the incident radiation flux either alter its characteristics or are too complicated. The results of tests of a new detector, where quartz glass is used as a sensing element, at the Angara-5-1 facility are presented. It is demonstrated experimentally that the detector sensitivity is ~2 V/(MW cm2) and the time resolution is ~1 ns. The mechanism of formation of the response signal, where the temperature of electrons produced under irradiation plays a significant part, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.